
Creative Software Design

10 – Polymorphism 2

Yoonsang Lee

Fall 2022

Today's Topics

• Behind Virtual Functions

• Pure Virtual Function

• The Practical Power of Polymorphism

• Some Issues about Virtual Functions

• Abstract Class / Pure Abstract Class

• Type Casting Operators

Review: Virtual Functions

• Virtual functions are keys to implement

polymorphism in C++.

– declare polymorphic member functions to be 'virtual',

– and use the base class pointer / reference to refer an

instance of the derived class,

– then the function call from a base class pointer /

reference will execute the function overridden in the

derived class.

CSStudent Example with Virtual Functions

#include <iostream>

using namespace std;

class Person

{

public:

virtual void talk()

{

cout << "I'm a person" << endl;

}

};

class Student : public Person

{

public:

virtual void talk()

{

cout << "I'm a student" << endl;

}

void study()

{

cout << "study" << endl;

}

};

class CSStudent : public Student

{

public:

virtual void talk()

{

cout << "I'm a CS student" <<

endl;

}

void writeCode()

{

cout << "writeCode" << endl;

}

};

int main()

{

CSStudent csst;

csst.talk(); //"I'm a CS student"

Person& asPerson = csst;

asPerson.talk(); //"I'm a CS student"

return 0;

}

CSStudent Example w/o Virtual Functions

#include <iostream>

using namespace std;

class Person

{

public:

void talk()

{

cout << "I'm a person" << endl;

}

};

class Student : public Person

{

public:

void talk()

{

cout << "I'm a student" << endl;

}

void study()

{

cout << "study" << endl;

}

};

class CSStudent : public Student

{

public:

void talk()

{

cout << "I'm a CS student" <<

endl;

}

void writeCode()

{

cout << "writeCode" << endl;

}

};

int main()

{

CSStudent csst;

csst.talk(); //"I'm a CS student"

Person& asPerson = csst;

asPerson.talk(); //"I'm a person"

return 0;

}

Behind Virtual Functions

• How do virtual functions work internally in C++?

• → It depends on complier implementation. The

C++ standard only specifies the behavior of virtual

functions.

• But most compilers use virtual method table (a.k.a.

vtable) mechanism.

Memory Layout of C++ Object

class Shape

{

public:

Shape();

double getArea();

double getPerimeter();

private:

Vector2D position;

Color outline, fill;

};

int main()

{

Shape s1;

Shape* s2 = new Shape;

delete s2;

return 0;

}

s1

fill

outline

position

*s2

fill

outline

position

Memory Layout of C++ Object

class Shape

{

public:

Shape();

double getArea();

double getPerimeter();

private:

Vector2D position;

Color outline, fill;

};

int main()

{

Shape s1;

Shape* s2 = new Shape;

double a = s2->getArea();

delete s2;

return 0;

}

s1

fill

outline

position

*s2

fill

outline

position

Shape::getArea() (in code segment)

jumps to

Static binding

- Compiler generates code to call (jump to the address of)

Shape::getArea() directly.

Memory Layout of C++ Object

class Shape

{

public:

Shape();

virtual double getArea();

virtual double getPerimeter();

private:

Vector2D position;

Color outline, fill;

};

int main()

{

Shape s1;

Shape* s2 = new Shape;

delete s2;

return 0;

}

s1

fill

outline

position

vptr

*s2

fill

outline

position

vptr

vtable for class Shape

Shape::getPerimeter()

Shape::getArea()

• vtable is a lookup table that contains the addresses of the object's dynamically

bound virtual functions.

• vtable is created only for classes with at least one virtual function.

• vptr is created as a “hidden” member of each instance of these classes and

initialized to point to the vtable of the actual type of the instance.

Memory Layout of C++ Object

class Shape

{

public:

Shape();

virtual double getArea();

virtual double getPerimeter();

private:

Vector2D position;

Color outline, fill;

};

int main()

{

Shape s1;

Shape* s2 = new Shape;

double a = s2->getArea();

delete s2;

return 0;

}

s1

fill

outline

position

vptr

*s2

fill

outline

position

vptr

vtable for class Shape

Shape::getPerimeter()

Shape::getArea()

jumps to

Dynamic binding

- Compiler generates code to call (jump to) the 'getArea' entry

(index 0 in this example) of the vtable through the vptr.

Memory Layout of C++ Object

class Shape

{

public:

Shape();

virtual double getArea();

virtual double getPerimeter();

private:

Vector2D position;

Color outline, fill;

};

class Circle: public Shape

{

public:

Circle(double r);

virtual double getArea();

double getPerimeter();

private:

double radius;

};

int main()

{

Shape* s1 = new Shape;

Shape* c1 = new Circle;

return 0;

}

*s1

fill

outline

position

vptr

*c1

radius

fill

outline

position

vptr

vtable for class Shape

Shape::getPerimeter()

Shape::getArea()

vtable for class Circle

Circle::getPerimeter()

Circle::getArea()

Inherited member variables

Memory Layout of C++ Object

class Shape

{

public:

Shape();

virtual double getArea();

virtual double getPerimeter();

private:

Vector2D position;

Color outline, fill;

};

class Circle: public Shape

{

public:

Circle(double r);

virtual double getArea();

double getPerimeter();

private:

double radius;

};

int main()

{

Shape* s1 = new Shape;

Shape* c1 = new Circle;

c1->getArea();

return 0;

}

*s1

fill

outline

position

vptr

*c1

radius

fill

outline

position

vptr

vtable for class Shape

Shape::getPerimeter()

Shape::getArea()

vtable for class Circle

Circle::getPerimeter()

Circle::getArea()

jumps to

Inherited member variables

class Shape

{

public:

Shape();

virtual double getArea();

virtual double getPerimeter();

private:

Vector2D position;

Color outline, fill;

};

class Circle: public Shape

{

public:

Circle(double r);

virtual double getArea();

double getPerimeter();

private:

double radius;

};

class TextCircle: public Circle

{

public:

TextCircle(string s);

double getArea();

private:

string text;

};

int main(){

Shape s1; Circle c1; TextCircle tc1;

return 0;

}

s1

fill

outline

position

vptr

c1

radius

fill

outline

position

vptr

tc1

text

radius

fill

outline

position

vptr

vtable for class TextCircle

Circle::getPerimeter()

TextCircle::getArea()

vtable for class Shape

Shape::getPerimeter()

Shape::getArea()

vtable for class Circle

Circle::getPerimeter()

Circle::getArea()

class Shape

{

public:

Shape();

virtual double getArea();

virtual double getPerimeter();

private:

Vector2D position;

Color outline, fill;

};

class Circle: public Shape

{

public:

Circle(double r);

virtual double getArea();

double getPerimeter();

private:

double radius;

};

class TextCircle: public Circle

{

public:

TextCircle(string s);

double getArea();

private:

string text;

};

int main(){

Shape* tc1 = new TextCircle;

double p = tc1->getPerimeter();

return 0;

}

*tc1

text

radius

fill

outline

position

vptr

vtable for class TextCircle

Circle::getPerimeter()

TextCircle::getArea()

jumps to

Behind Virtual Functions

• vtable is created only for classes with at least one virtual

function (a.k.a. polymorphic classes), generally at compile

time.

– It is a lookup table that contains the addresses of the object's

dynamically bound virtual functions.

• vptr is created & initialized at runtime, when a polymorphic

class instance is constructed.

– created as a “hidden” member of the instance.

– initialized to point to the vtable of the actual type of the instance.

– The actual name of vtpr depends on the compiler: __vptr, __vfptr, ...

Behind Virtual Functions

• Compiling non-virtual function calls:

– Compiler generates code to call (jump to the address of)

the non-virtual function directly.

• Compiling virtual function calls:

– Compiler generates code to call (jump to) a certain entry

of the vtable (the index for each function is known at

compile time) through the vptr.

– Which vtable is pointed by vptr is determined at run

time (when an object is constructed).

Quiz #1

• Go to https://www.slido.com/

• Join #csd-ys

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in this

format to be counted as attendance.

https://www.slido.com/

Pure Virtual Function

• What if you cannot define the base class' member function?
(no 'default' behavior)

#include <vector>

#include <iostream>

using namespace std;

class Shape {

public:

virtual void Draw() {

// Nothing to do here

}

};

class Rectangle : public Shape {

public:

virtual void Draw() {

cout << “rect” << endl;

}

};

class Triangle : public Shape {

// What if we forget to override

// Draw() here?

};

int main() {

vector<Shape*> v;

v.push_back(new Rectangle);

v.push_back(new Triangle);

for (size_t i = 0; i < v.size(); ++i) {

v[i]->Draw();

}

for (size_t i = 0; i < v.size(); ++i) {

delete v[i];

}

return 0;

}

Pure Virtual Function

• In such cases, you can use pure virtual functions.

– Just declare a virtual function and end it with ‘= 0’

class Shape {

public:

// Pure virtual Draw function.

virtual void Draw() = 0;

};

Pure Virtual Function

• A class with pure virtual functions cannot be instantiated.

• For its subclass to be instantiated, you must implement (override) all

pure virtual functions.

– or the subclass still has a pure virtual function and cannot be instantiated.

#include <vector>

#include <iostream>

using namespace std;

class Shape {

public:

virtual void Draw() = 0;

};

class Rectangle : public Shape {

public:

virtual void Draw() {

cout << “rect” << endl;

}

};

class Triangle : public Shape {

// What if we forget to override

// Draw() here? => Error!

};

int main() {

Shape s1; // => Error!

vector<Shape*> v;

v.push_back(new Rectangle);

v.push_back(new Triangle);

for (size_t i = 0; i < v.size(); ++i) {

v[i]->Draw();

}

for (size_t i = 0; i < v.size(); ++i) {

delete v[i];

}

return 0;

}

Pure Virtual Function

• A pure virtual function in a base class specifies "what to
do".

• Each overridden virtual function in derived classes
describes "how to do".

• You can think a pure virtual function provides interface to
do something.

• FYI, a pure virtual function (C++ term) is often called an
abstract method in other programming languages (Java,
Python, ...).

The Practical Power of (Subtype) Polymorphism

• When coding type-specific details, polymorphism
allows you to avoid using if...else or switch statements
which are often error-prone.

• With polymorphism...

– It’s easier to add a new type (just adding a new subclass
without touching the existing class code).

– Each type-specific implementations are isolated from each
other (in different classes).

– It does not allow an exceptional case with an unexpected
type.

– It removes duplicate if...else or switch statements.

class Animal

{

public:

virtual string talk() = 0;

virtual int getNumLegs() = 0;

virtual void walk() = 0;

};

class Cat : public Animal

{

public:

virtual string talk() { return "Meow!"; }

virtual int getNumLegs() { return 4; }

virtual void walk() {...}

};

class Dog : public Animal

{

public:

virtual string talk() { return "Woof!"; }

virtual int getNumLegs() { return 4; }

virtual void walk() {...}

};

class Duck : public Animal

{

public:

virtual string talk() { return "Quack!"; }

virtual int getNumLegs() { return 2; }

virtual void walk() {...}

};

class Pig : public Animal

{

public:

virtual string talk() { return "Oink!"; }

virtual int getNumLegs() { return 4; }

virtual void walk() {...}

};

class Animal

{

public:

AnimalType type;

virtual string talk() {

switch(type) {

case CAT: return "Meow!";

case DOG: return "Woof!";

case DUCK: return "Quack!";

case PIG: return "Oink!";

default:

assert(0);

return string();

}

}

virtual int getNumLegs() {

switch(type) {

case CAT: return 4;

case DOG: return 4;

case DUCK: return 2;

case PIG: return 4;

default:

assert(0);

return -1;

}

}

virtual void walk() {

switch(type) {

case CAT:

...

break;

case DOG:

...

break;

case DUCK:

...

Some Issues with Virtual Functions

• You may have heard that virtual functions have

some disadvantages.

– More memory: an object of a class with virtual functions

has an additional member, a vptr

– Slower speed: pointer indirection to call functions,

limited possibilities to be inlined or optimized

Some Issues with Virtual Functions

• But, when coding type-specific details, these issues

are too tiny to matter.

• Because replacing virtual function calls with

if...else or switch

– has disadvantages described in “The Practical Power of

(Subtype) Polymorphism” page.

– and might be even slower.

Some Issues with Virtual Functions

• But if your classes are not designed to be inherited,

• Then there is no reason to use virtual functions.

– It's better to avoid using virtual functions not to have

(slightly) more memory and (slightly) slower speed in

this case.

Abstract Class

• An abstract class is a class that cannot be instantiated.

– a.k.a. abstract base class

– A class that can be instantiated is called concrete class.

• In C++, a class with one or more pure virtual functions is

an abstract class.

– For its subclass to be instantiated, you must implement (override) all

pure virtual functions.

• or the subclass itself become an abstract class and cannot not be instantiated.

class Shape {

public:

virtual void Draw() = 0;

};

int main() {

Shape shape; // error! cannot be instantiated!

return 0;

}

Constructors in Abstract Classes

• Do we need to define a constructor for an abstract

class? An abstract class will never be instantiated!

Constructors in Abstract Classes

• Do we need to define a constructor for an abstract

class? An abstract class will never be instantiated!

• Yes! You should still provide a constructor to

initialize its member variables, since they will be

inherited by its subclasses.

class Animal

{

private:

string name;

public:

Animal(const string& name_):name(name_) {}

virtual string talk() = 0;

virtual int getNumLegs() = 0;

virtual void walk() = 0;

};

class Cat : public Animal

{

public:

Cat(const string& name_):Animal(name_) {}

virtual string talk() { return "Meow!"; }

virtual int getNumLegs() = { return 4; }

virtual void walk() {...};

};

class Dog : public Animal

{

public:

Dog(const string& name_):Animal(name_) {}

virtual string talk() { return "Woof!"; }

virtual int getNumLegs() = { return 4; }

virtual void walk() {...};

};

Destructors in Abstract Classes

• Then do we need to define a destructor for an

abstract class?

Destructors in Abstract Classes

• Then do we need to define a destructor for an

abstract class?

• Yes! An abstract class SHOULD have a virtual

destructor even if it does nothing.

Destructors in Abstract Classes

• An abstract class SHOULD have a virtual destructor even
if it does nothing.

• Recall that:

• A destructor of a base class should be virtual if

– its descendant class instance is deleted by the base class pointer.
(..or)

– any of member function is virtual (which means it’s a polymorphic
base class).

• An abstract class

– has at least one pure virtual function.

– can be used as “base class reference(or pointer)”.

#include <iostream>

using namespace std;

class Shape

{

public:

Shape() {}

virtual ~Shape() {}

virtual void draw() = 0;

};

class Rectangle : public Shape

{

private:

int* width;

int* height;

public:

Rectangle()

{

width = new int;

height = new int;

}

virtual ~Rectangle()

{

delete width;

delete height;

}

virtual void draw()

{ ... }

};

int main()

{

Shape* shape1 = new Rectangle;

shape1->draw();

delete shape1;

return 0;

}

Pure Abstract Class

• A class only with pure virtual functions.

– No member variables or non-pure-virtual functions (except destructor)

– Defines an interface to a service -
“What does the class do”, “How it should be used”

– “How to do it” should be implemented in derived concrete classes

• In general, a pure abstract class is used to define an interface and
is intended to be inherited by concrete classes.

class Shape {

public:

virtual ~Shape() {}

virtual void Draw() const = 0;

virtual int GetArea() const = 0;

virtual void MoveTo(int x, int y) = 0;

};

void DrawShapes(const vector<Shape*>& v) {

for (int i = 0; i < v.size(); ++i) v[i]->Draw();

}

Quiz #2

• Go to https://www.slido.com/

• Join #csd-ys

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in this

format to be counted as attendance.

https://www.slido.com/

Type Casting Operators in C

• C-style casting operator: (T)var

• Problems:

– Programmer’s intention is not clear

– No type checking (unsafe)

– Not easy to search (C/C++ code has a very large number

of parentheses!)

Type Casting Operators in C++

• C++ casting operators

– static_cast<T>(var)

– dynamic_cast<T>(ptr)

– const_cast<T>(ptr)

– reinterpret_cast<T>(ptr)

• Each operator is designed to be used for specific

purpose.

static_cast

• static_cast<T> performs type checking at

compile time.

– If T is a pointer or reference type:

• Safe for upcast (derived -> base)

• Unsafe for downcast (base -> derived)

– It’s the programmer's responsibility to make sure that base class pointer is

actually pointing to the specified derived class object.

– If T is a primitive type:

• Can be used for casting between primitive types

int i = static_cast<int>(2.0);

static_cast

class B {};

class D : public B

{

public:

int member_D;

void test_D() { member_D=10; }

};

class X {};

int main() {

B b; D d; char ch; int i=65;

B* pb = &b; D* pd = &d;

D* pd2 = static_cast<D*>(pb); // Unsafe. If you access pd2’s members not

// in B, you get a run time error.

pd2->test_D(); // Runtime error!

B* pb2 = static_cast<B*>(pd); // Safe, D always contains all of B.

X* px = static_cast<X*>(pd); // Compile error!

ch = static_cast<char>(i); // int to char

}

dynamic_cast

• dynamic_cast<T> performs type checking at

run time.

– Safe for downcast

• If base class pointer is not pointing to the specified derived class

object, dynamic_cast of base to derived pointer returns null

pointer (0).

– Note that dynamic_cast can only downcast

polymorphic types.

• The base class should have at least one virtual function.

dynamic_cast

#include <iostream>

class B

{

public:

virtual ~B() {}

};

class D : public B

{

public:

void test_D() { std::cout << "test_D()" << std::endl; }

};

int main() {

B b; D d;

B* pb = &b;

//B* pb = &d;

D* pd2 = dynamic_cast<D*>(pb);

if(pd2)

pd2->test_D();

}

const_cast, reinterpret_cast

• const_cast<T*> removes 'constness' from const T*
ptr

• reinterpret_cast is just like C-style cast; avoid using
it.

class B {};

class X {};

int main() {

B b;

B* pb = &b;

const B* cpb = pb;

B* pb2 = const_cast<B*>(cpb);

X* px = reinterpret_cast<X*>(pb);

}

Quiz #3

• Go to https://www.slido.com/

• Join #csd-ys

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in this

format to be counted as attendance.

https://www.slido.com/

Notes for C++ Casting Operators

• Hard to type! (too many characters!)

• Actually, C++ casting operators are ugly by design.

• Avoid casting as far as possible. Prefer

polymorphism.

“Maybe, because static_cast is so ugly and so relatively hard to type, you're more

likely to think twice before using one? That would be good, because casts really are

mostly avoidable in modern C++.”

- Bjarne Stroustrup (C++ creator) http://www.stroustrup.com/bs_faq2.html#static-cast

http://www.stroustrup.com/bs_faq2.html#static-cast

Next Time

• Labs for this lecture:

– Lab1 (next Tue): Assignment 10-1

– Lab2 (next Thur): Assignment 10-2

• Next lecture:

– 11 – Copy Constructor, Operator Overloading

